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INTRODUCTION

Tilapia Oreochromis spp. (Cichlidae) are commer-
cially important fish (Lazard 2009): global production
of cultured tilapia now approaches 3 million t per
annum, second only to that of carp (common carp,
grass carp, silver carp, bighead carp, and crucian carp)
production (FAO 2008). These freshwater cichlid fish
are extremely adaptable and, after acclimatization to
salinity, can grow in seawater (Breves et al. 2010). This
flexibility enables the use of sea cages to grow tilapia,
which markedly increases the production capacity of
countries with extensive coastlines. For this reason, tri-
als were started to assess the productive performance
in seawater of 2 genetic types of tilapia currently
reared in Veracruz, Mexico; namely Mozambique tila-

pia (MT) Oreochromis mossambicus Peters, and Pargo-
UNAM (PU), a red synthetic hybrid tilapia whose
genetic composition is 50% Florida red tilapia, 25%
Rocky Mountain tilapia, and 25% red variant Oreo-
chromis niloticus L. (Muñoz-Córdova & Garduño-Lugo
2003).

MT and PU acclimatized well to salinity, but were
rapidly infected with Neobenedenia sp. when exposed
to unfiltered seawater from the Gulf of Mexico and
died within 2 to 3 wk — although mortality rates were
noticeably higher for PU than for MT. Previously,
Neobenedenia melleni (MacCallum 1927) Yamaguti,
1963, has been shown to infect tilapia reared in sea
cages in Hawaii (Kaneko et al. 1988), Martinique (Gal-
let de St. Aurin et al. 1990), the Bahamas (Mueller et al.
1992, Cowell et al. 1993, Ellis & Watanabe 1993), and
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Jamaica (Robinson et al. 1992, 2008). There are no
reports of Neobenedenia spp. infecting wild fish off
Veracruz, Mexico, but several tropical teleosts have
been recorded to harbor N. melleni in the Caribbean
Sea (Kohn et al. 2006). Of the fish listed by Kohn et al.
(2006) as hosts for N. melleni, we highlight 7 species
that (1) occur in coral reefs off Veracruz; and (2) are
held at the Acuario de Veracruz, where they recur-
rently present Neobenedenia sp. infections. These 7
species are doctorfish Acanthurus chirurgus Bloch (see
Bunkley-Williams & Williams 1994, Sikkel et al. 2009),
rock hind Epinephelus adscensionis L. (see Mueller et
al. 1994), yellowtail snapper Ocyurus chrysurus Bloch
(see Gallet de St. Aurin et al. 1990, Mueller et al. 1994),
smooth trunkfish Rhinesomus (= Lactophrys) triqueter
L. (see Nigrelli 1947), spot-fin porcupinefish Diodon
hystrix L. (see Nigrelli 1947), spotfin butterflyfish
Chaetodon ocellatus Bloch (see Nigrelli 1947), and
French angelfish Pomacanthus paru Bloch (see
Nigrelli 1947). The original description of N. melleni
was based on specimens collected from fish kept at the
New York Aquarium (MacCallum 1927), where out-
breaks of the parasite continued for decades (Jahn &
Kuhn 1932, Nigrelli & Breder 1934, Nigrelli 1947,
Thoney & Hargis 1991). N. melleni and N. girellae
(Hargis, 1955) Yamaguti, 1963 are infamous pathogens
affecting wild and farmed fishes worldwide (Whitting-
ton 2004). These might be the same species, as Whit-
tington & Horton (1996) synonymized N. girellae with
N. melleni; however this decision has not been
accepted universally. These ectoparasites probably
form a complex of morphologically indistinguishable
species (Whittington 2004) which, unlike most mono-
geneans, exhibit low host specificity, as they have
been recorded from the surfaces of more than 100 cap-
tive and wild teleost species in more than 30 families
from 5 orders (Deveney et al. 2001). Given their nega-
tive impact on marine fish culture, considerable efforts
have been made to control Neobenedenia spp., partic-
ularly the pathogenic N. melleni and N. girellae,
including biological control by means of cleaner fish
(Cowell et al. 1993) and cleaner shrimp (McCammon et
al. 2010); treatment of infected hosts with hyposaline
(Ellis & Watanabe 1993), freshwater (Kaneko et al.
1988, Fajer-Ávila et al. 2008, Ohno et al. 2009), or cal-
cium and magnesium ion-free buffer baths (Ohashi et
al. 2007); chemical treatment with copper sulphate and
formalin (Thoney & Hargis 1991); pharmacological
treatment with trichlorfon (Gallet de St. Aurin et al.
1990) and praziquantel (Hirazawa et al. 2004); and
attempts at immunization (Bondad-Reantaso et al.
1995, Hatanaka et al. 2005).

Neobenedenia sp. collected during the first outbreak
on tilapia in the Acuario de Veracruz was used to pre-
pare a crude worm extract, with which we attempted

the immunization of naïve MT and PU against the par-
asite. The challenge of immunized and control hosts
enabled us to characterize the dynamics of infection
and to compare the susceptibility of the 2 genetic
tilapia types.

MATERIALS AND METHODS

Fish. Two tilapia types were used, MT and PU (see
Muñoz-Córdova & Garduño-Lugo 2003). Fish were
donated by the Centro de Enseñanza, Investigación y
Extensión en Ganadería Tropical, Universidad Naci-
onal Autónoma de México (UNAM), and had been
transported to the Acuario de Veracruz 3 wk before the
start of salinity acclimatization. Fish were acclimatized
to salinity in 1.2 m3 (1 m long × 1 m wide × 0.85 m high)
flow-through tanks using filtered seawater mixed with
decreasing amounts of filtered, dechlorinated tap
freshwater. Starting with 100% freshwater, 5‰ incre-
ments in salinity were made gradually until seawater
salinity (35‰) was reached within ca. 3 wk. Salinity
was measured daily with a refractometer, and 2 to 3
water changes (30 to 40% of total water volume) were
made to maintain adequate physicochemical parame-
ters. The mean water temperature throughout the
experiments was 29°C. All procedures were performed
at the Acuario de Veracruz facilities and approved by
the ethical review board of the Veterinary Medicine
School, UNAM.

Parasite collection. Individual fish were immersed
for 10 min in 5 l of filtered, dechlorinated tap fresh-
water and gently massaged to physically dislodge as
many Neobenedenia sp. as possible (Fajer-Ávila et al.
2008); fish were observed during this treatment to
ensure they were not distressed. Dead parasites turned
creamy white and were collected by filtering the bath
water through a fine cloth (50 µm mesh size). No quan-
titative study was made on the efficiency of freshwater
baths in removing parasites, but several treated fish
were inspected under the microscope following the
freshwater bath, and no worms were detected —
although it is possible that during our quick inspection
some transparent, living parasites remained un-
noticed. Dead worms were either immediately placed
in Petri dishes and counted under a dissection micro-
scope, or preserved in 70% ethanol for later analysis.
During microscopic examination, the adult status of
parasites (i.e. sexual maturity and ability to produce
eggs) was assessed by the presence of the vitellarium
and/or signs of egg production. Fixed worms were
identified to the generic level by Ian Whittington
(South Australian Museum, Adelaide). Voucher spe-
cimens of Neobenedenia sp. were deposited in
the Colección Nacional de Helmintos, Universidad
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Nacional Autónoma de México, Mexico City (Cata-
logue number CNHE 7447).

Immunization. Parasites collected and fixed in 70%
ethanol during the original Neobenedenia sp. out-
break in September 2008 were washed in clean 96%
ethanol. Several hundreds of ethanol-moist whole
worms of different sizes (range ca. 0.5 to 4 mm) were
ground in a glass mortar until ca. 1 ml of worm paste
was obtained; this paste was mixed with 1 ml of sterile
injection water. One ml of the resulting worm solution
was added to a new, 10 ml bottle of Freund’s complete
adjuvant (FCA; Sigma-Aldrich), mixed well, and kept
at 4°C until used 1 wk later; we called this preparation
crude worm extract. In October 2008, separate stocks
of salinity-acclimatized, naïve fish (not exposed to the
original Neobenedenia sp. outbreak or unfiltered sea-
water) were used in the immunization trials. A total of
30 naïve PU and 30 naïve MT were immunized 1 mo
before exposure to unfiltered seawater: each fish was
inoculated intraperitoneally (i.p.) with 40 µl of the
crude worm extract. Prior to each injection, the crude
worm extract was vigorously mixed with a vortex to
form an emulsion. Simultaneously, 30 naïve control
animals of each genetic type received 40 µl FCA i.p.
without worm extract. Immunized fish were identified
by clipping their dorsal fins.

Parasite challenge. Unfiltered seawater pumped
from the Gulf of Mexico at the port of Veracruz is the
source of Neobenedenia sp. infection at the Acuario de
Veracruz, as fish from the original outbreak started
acquiring parasites after exposure to it. No information
is available on the local Neobenedenia spp. hosts off
Veracruz, but probable sources of infection include
tropical fish known to harbor N. melleni in the
Caribbean Sea (Kohn et al. 2006), as some of these fish
also occur off the port of Veracruz, Mexico. In Novem-
ber 2008, experimentally immunized and control
tilapia were housed in 1 m3 (1 m long × 1 m wide × 1 m
high) floating cages placed in a 56.5 m3 (6 m diam. × 2
m high) circular tank exposed to unfiltered seawater: 2
cages containing 60 fish each were
used (15 immunized PU, 15 control PU,
15 immunized MT, 15 control MT).
Fish mortality was recorded daily dur-
ing the study; mortality of the experi-
mental groups was contrasted to that of
the naïve fish stocks from which immu-
nized and control hosts were taken,
which were not exposed to unfiltered
seawater. As exposure to unfiltered
seawater resulted in infection, days
post exposure were considered as days
post infection (dpi). On each parasite
census dpi, 10 fish of each experimen-
tal group (5 from each cage) were

bathed in freshwater to collect parasites. During sam-
pling, fish were measured (fork length), and spines of
their dorsal fin were clipped to identify them and avoid
repeated sampling; after this, fish were returned to
their cages. The sampling regime and sample sizes are
shown in Table 1. By 18 dpi, all PU had died and all
surviving MT had been previously sampled for para-
sites. Thus, parasitological and mortality data obtained
18 and 21 dpi, which represent parasite burdens
acquired during unknown periods of time, were not
used for parasitological or survival analyses. Nonethe-
less, mean parasite abundances recorded on MT on
these days are shown to illustrate the burdens of fish
kept in enclosed systems, as well as the rapid increase
of parasite populations.

Statistical analysis. Fish sizes were compared by
means of t-tests using the software Minitab 15. Use of
parasitological parameters follows Bush et al. (1997).
Parasite mean abundances and their 95% confidence
intervals were calculated and compared in bootstrap t-
tests, with 2000 replications using the software Quanti-
tative Parasitology 3.0 (Rózsa et al. 2000). Survival
plots were calculated by the Kaplan-Meier method and
compared with a Wilcoxon test using Minitab 15.

RESULTS

Exposure of experimental fish to unfiltered seawater
resulted in Neobenedenia sp. infection: starting on
Day 3 pi, parasites were recovered from exposed
tilapia (PU mean abundance 1.25 worms fish–1, 40%
prevalence; MT 1.56 worms fish–1, 45% prevalence).
Mean standard lengths of PU (8.01 cm) and MT
(7.69 cm) were not significantly different (p = 0.132).
Immunization had no effect in reducing the number
of worms fish–1 following exposure to infection: on
Days 3 through 15 pi, Neobenedenia sp. abundance
did not differ significantly between immunized and
control fish for either PU or MT (data not shown; all
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Fish group Sample size at Day pi
3 5 7 9 12 15 18 21

Control PU 10 10 10 10 8 3 n/a n/a
Immunized PU 10 10 10 10 7 1 n/a n/a
Control MT 10 10 10 10 10 10 10a 10a

Immunized MT 10 10 10 10 10 10 10a 10a

aAs these fish had been previously sampled, parasite abundance values are
only indicative and were not used in statistical analyses

Table 1. Sampling regime and sample sizes of control and immunized Pargo-
UNAM (PU) and Mozambique tilapia Oreochromis mossambicus (MT) in-
spected for Neobendenia sp. infection. pi: day post-infection, n/a: not available

(all fish from that group had died)
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p values > 0.05). Survival plots of immunized and
control fish (both PU and MT) did not differ signifi-
cantly in the same period (data not shown). Thus, data
from immunized and control fish obtained on Days 3
through 15 pi were pooled and analyzed further as 2
groups, PU and MT (Figs. 1 & 2).

Levels of Neobenedenia sp. on PU and MT increased
gradually until Day 9 pi, with both prevalence and
abundance of infection rising steadily (Fig. 1). No sig-
nificant differences in abundance were detected in this
period between PU and MT (data not shown, all p-val-
ues > 0.05). On Day 12 pi, a sudden rise in parasite
abundance was observed, and prevalence of infection
reached 100% in both tilapia groups, with parasite
burdens not differing significantly between them (p =
0.442): PU had a mean abundance of 51.3 worms fish–1

(range 13 to 99 worms fish–1), while MT presented a
mean of 62.4 worms fish–1 (range 7 to 178 worms

fish–1). However, despite similar parasite abundances
from the start of exposure through to 12 dpi, infected
PU and MT differed considerably in survival rates. By
Day 12 pi, PU had experienced 78%, and MT 30%
mortality (Fig. 3). Although no pathological examina-
tions were made on dead/dying experimental fish,
mortality was considered to result from Neobenedenia
sp. infection (and/or secondary opportunistic infec-
tions), as no deaths were recorded in the naïve, salin-
ity-acclimatized tilapia stocks not exposed to unfil-
tered seawater. In all parasite samples, a considerable
size range (ca. 1 to 4 mm) was observed among adult
worms. On Day 15 pi (Fig. 2), parasite abundance was
significantly higher (p = 0.014) in MT (mean 191.2,
range 65 to 366 worms fish–1) than in PU (mean 61.3,
range 18 to 151 worms fish–1); however, only 4 surviv-
ing PU were compared to 20 surviving MT (Table 1).
Following Neobenedenia sp. infection, the mean sur-
vival time calculated for MT (13.9 d) was significantly
higher than that for PU (8.3 d; p = 0.0001) (Fig. 3).

Abundance data obtained for MT 18 and 21 dpi rep-
resent unknown exposure periods, as all fish had been
previously sampled. Nonetheless, data show that 22%
of MT survived longer than PU (potentially up to
21 dpi) despite their high parasite burdens (mean
abundance 21 dpi was 898.4, range 182 to 1923 worms
fish–1; Fig. 2). These data also show that parasite abun-
dance (and therefore the rate of parasite acquisition)
increased noticeably twice during the study period: the
first time between Days 9 and 12 pi, the second
between Days 18 and 21 pi.
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DISCUSSION

Immunization of tilapia with whole worm crude ex-
tracts of Neobenedenia sp. did not confer any protec-
tion against infection, as assessed by comparing para-
site abundances of immunized and control fish.
Likewise, although Japanese flounder Paralichthys
olivaceus Temminck & Schlegel developed partial
resistance to secondary infection with N. girellae,
immunization with crude parasite extracts did not
confer any protection (Bondad-Reantaso et al. 1995).
Interestingly, the first reports of fish developing
immunity against monogenean infections came from
the New York Aquarium, where it was noticed that
abundances of N. melleni were higher in naïve fish
than in previously infected fish (Jahn & Kuhn 1932,
Nigrelli & Breder 1934). Thus, development of vac-
cines against these ectoparasites might be feasible,
considering that several fish species have been re-
ported to develop resistance to secondary infections
with both N. melleni (see Nigrelli & Breder 1934,
Nigrelli 1947, Buchmann & Bresciani 2006) and N.
girellae (see Ohno et al. 2008). Immunization of
Japanese flounder P. olivaceus with a ciliary surface
glycoprotein of N. girellae elicits the production of
antibodies which agglutinate/immobilize oncomira-
cidia, and which can be detected in both fish serum
and mucus — but induces no protection against infec-
tion (Hatanaka et al. 2005). Availability of the cloned
cathepsin L-like cysteine protease from N. melleni
(see Rao & Yang 2007) provides a further potential
target molecule for both pharmacological and vacci-
nation-mediated controls.

In the present study, immunization failed to confer
resistance to Neobenedenia sp., but this vaccination
trial enabled us to analyze the dynamics of infection
and of parasite-induced host mortality. Although no
pathological studies were conducted to ascertain that
fish mortality was due to infection with Neobenedenia
sp. (and/or ensuing secondary infections), we propose
this was the case, for 2 reasons: (1) no mortality was
recorded in the fish stocks from which our experimen-
tal fish came but which were not exposed to unfiltered
seawater and thus were not infected; (2) detailed stud-
ies of the effects of N. girellae on amberjack Seriola
dumerili Risso have shown that parasites severely
damage hosts shortly after infection (Hirayama et al.
2009). Our observation that adult parasites varied con-
siderably in size might be related to their pathogenic-
ity, as this variation could be a consequence of worms
maturing early and growing rapidly (I. Whittington
pers. comm.). Data on the dynamics of Neobenedenia
sp. infection demonstrated that parasite acquisition
was gradual during the first 9 dpi, and that parasite
abundance increased noticeably between 9 and 12 dpi,

possibly reflecting the recruitment of a second parasite
generation originating from eggs entangled on the net
of the floating cages — a further sudden increase of
parasite abundance observed between 18 and 21 dpi
might correspond to a third parasite generation. Up to
12 dpi, mean parasite abundances did not differ signif-
icantly between tilapia groups, i.e. MT and PU were
equally resistant to infection with Neobenedenia sp.
As proposed recently (Read et al. 2008), susceptibility
encompasses 2 different but complementary host traits
that together determine how harmful an infection is:
resistance and tolerance. Resistance refers to the abil-
ity to limit parasite burdens, while tolerance is the abil-
ity to limit the health or fitness consequences of a given
parasite burden. Therefore, although in our case PU
and MT exhibited similar resistance to Neobenedenia
sp., they differed markedly in tolerance. The different
host tolerance is illustrated by the observation that a
mean intensity of ca. 50 worms fish–1 killed all PU
within a fortnight, while 22% of MT survived longer
(possibly up to 3 wk pi), harboring mean parasite
abundances of ca. 900 worms fish–1. As pointed out by
Read et al. (2008), resistance and tolerance are not
absolute manifestations, as these depend on the partic-
ular pathogens to which hosts are exposed. Indeed, the
same hosts studied here differed in their resistance to
the monogenean Gyrodactylus cichlidarum Paperna,
1968 (PU harboring significantly higher parasite bur-
dens than MT), but were similarly tolerant to infection
(as neither tilapia type exhibited mortality or measur-
able effects of infection over a 1 yr period) (M. Rubio-
Godoy unpubl. data). Differences in resistance to
infection shown by diverse salmonid species have
been linked to variation in the ability of immune fac-
tors to destroy monogenean parasites; examples in-
clude differential resistance to Gyrodactylus derjavini
Mikhailov, 1975 (see Buchmann & Uldal 1997) and to
Discocotyle sagittata (Leuckart, 1842) Diesing, 1850
(see Rubio-Godoy et al. 2004). Similarly, yellowtail
Seriola quinqueradiata Temminck & Schlegel, amber-
jack S. dumerili, and Japanese flounder P. olivaceus
differ in their susceptibility to infection by N. girellae
(see Ohno et al. 2008).

The present study expands the western range of
Neobenedenia sp. in the Gulf of Mexico/Caribbean
Sea region: we recorded the parasite at the port of
Veracruz (19° 11’ N, 96° 07’ W), and it had been pre-
viously reported infecting tilapias off Martinique
(14° 40’ N, 61° 00’ W), the Bahamas (25° 4’ N, 77° 20’ W),
and Jamaica (17° 59’ N, 76° 48’ W). Tropical marine fish
are likely to be the source of parasites in the Gulf of
Mexico/Caribbean, as Neobenedenia spp. have been
recovered from several wild fish in this region (Kohn et
al. 2006). In particular, the following fish species are
known N. melleni hosts and occur off Veracruz: doctor-
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fish Acanthurus chirurgus, rock hind Epinephelus
adscensionis, yellowtail snapper Ocyurus chrysurus,
smooth trunkfish Rhinesomus (= Lactophrys) triqueter;
spot-fin porcupinefish Diodon hystrix, spotfin butter-
flyfish Chaetodon ocellatus, and French angelfish
Pomacanthus paru. Our results suggest that infection
with Neobenedenia sp. might significantly limit tilapia
mariculture on the coastline of the Mexican state of
Veracruz.
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