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a b s t r a c t

Canthon cyanellus is a roller dung beetle with a wide distribution range in the tropical forests of the New
World. In Mexico, it inhabits the Pacific and the Gulf coasts, the Yucatan Peninsula and the south mainly
in the State of Chiapas. This species shows a wide geographical variation in cuticle color, which has been
used as defining trait for subspecies. In this study we analyzed the phylogeographic and demographic his-
tory of the Mexican populations of C. cyanellus using DNA sequences of the nuclear ITS2, and the mito-
chondrial COI and 16S genes. We found that not all the current valid subspecies are supported by the
molecular analysis. The populations are genetically and geographically structured in five lineages. The
diversification events that gave origin to the main lineages within this species complex occurred during
the Pleistocine in a time range of 1.63–0.91 Myr. The demographic history of these lineages suggests
post-glacial expansions toward the middle and the end of the Pleistocene. The combined data of mito-
chondrial and nuclear DNA suggest that the phylogeographic structure and demographic history of the
C. cyanellus populations are the result of: the geological and volcanic activity that occurred from the
end of the Pliocene to the Pleistocene; and the contraction and expansion of tropical forests due to the
glacial and inter-glacial cycles during the Pleistocene. Landscape changes derived from historical events
have affected the demographic history of the populations of this species. The results presented here point
to the need to review the taxonomic status and delimitation of the lineages encompassed in the Canthon
cyanellus complex.

! 2017 Elsevier Inc. All rights reserved.

1. Introduction

The area of confluence between the Nearctic and the Neotropi-
cal regions is known as the Mexican Transition Zone (MTZ), which
has fostered the in-situ or vicariant allopatric differentiation of a
number of insect groups (Halffter, 1976). The MTZ is a major cor-
ridor/barrier that has driven the geographic distribution of several
taxa, from plants to insects. In particular Mexico’s Neotropical
entomofauna shows phylogenetic affinities with South American
insects (Halffter, 1976, 1987). Retrieving the phylogeographic pro-

cesses associated to dispersion and vicariance allows one to better
understand the evolution of the taxa in terms of historical patterns.

The tribe Deltochilini Lacordaire, 1856 (Scarabaeidae: Scara-
baeinae) (formerly Canthonini, Tarasov and Génier, 2015) is one
of the most diverse Neotropical Scarabaeinae tribes (Davis et al.,
2008b). Within the tribe, the genus Canthon is the most species rich
lineage encompassing 174 species (Halffter and Martínez, 1977).
The genera within this tribe expanded from South America to Cen-
tral and North America during two possible expansion events
(Halffter, 1976). One occurred before or during the Miocene, and
another from the Plio-Pleistocene to date. Beetles whithin Canthon,
Melanocanthon, Boreocanthon and Glaphyrocanthon, are examples
of those expansion events (Kohlmann and Halffter, 1990).
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Kohlmann and Halffter (1990) suggest that beetle representa-
tives of the ancient invasion are currently distributed in biomes
that originated in the Miocene (i.e., arid zones, grasslands, and
temperate deciduous forests in North America). Canthon cyanellus,
C. indigaceus and C. morsei are lines of recent origin distributed in
biomes that developed during the Plio-Pleistocene in tropical rain-
forests; as well as species in Glaphyrocanthon, which invaded North
America from South America through the southern lowlands of
Mexico along the Pacific and Gulf of Mexico slopes, producing a
distribution pattern known as ’Typical Neotropical’ (Morrone,
2015).

Canthon cyanellus LeConte (1859) is a Neotropical roller dung
beetle. Kohlmann and Halffter (1990) suggested that this species
might have oriniginated in Central or South American during the
Plio-Pleistocene period. This species shows high phenotypic varia-
tion mainly in cuticular coloration, which can range from largely
reddish brown to entirely green or blue. It is distributed from Tex-
as, to Ecuador (Solís and Kohlmann, 2002). Robinson (1948) stated
that the southernmost distribution of C. cyanellus in the New
World is located in Brazil and Peru. Based on Robinson’s proposal
(1948), Halffter (1961) placed the different cromatic morphs
within a single species (C. cyanellus), recognizing three subspecies
that can be distinguished mostly by differences in color. The sub-
species C. c. cyanellus (LeConte 1859) has blue- and green-colored
morphs with reddish brown parts largely missing. In this sub-
species the pygidium has the same coloration as the rest of the
body. Its known distribution range encompasses Texas and Mexico
in the states of Nuevo Leon, San Luis Potosi, Hidalgo, Morelos,
Guerrero, Veracruz, Tabasco, Yucatan and Quintana Roo (Halffter,
1961). Canthon c. sallei has the dorsal surface largely reddish brown
with various greenish tones, the elytra are reddish brown with
greenish black markings, and the disc of the pronotum is largely
light reddish or yellowish brown. This subspecies is distributed
in Guatemala, Honduras, Costa Rica, Panama, Colombia, Peru and
Nicaragua; however it has recently been found in southern Mexico
(Favila, unpublished data). Canthon c. violetae differs in the color of
the pronotum and pygidium, which are largely reddish brown. It is
endemic to southern Mexico.

Solís and Kohlmann (2002) studied the genus Canthon in Costa
Rica and noted that the same locality host the different morphs
that define the three subspecies. Some of the Costa Rican morphs
show cuticle coloration almost identical to that of C. c. cyanellus
from Mexico, but always have a yellow pygidium, whereas the
populations in Nicaragua and Honduras have the light body col-
oration of C. c. sallei, whose coloration patterns reoccur in South
America.

Ortiz-Domínguez et al. (2006), working with C. c. cyanellus, ana-
lyzed the sexual recognition between sexes of the same population
and those of different populations along a latitudinal gradient of
the Gulf of Mexico slope. Their results indicate that populations
geographically separated by P600 km are undergoing an specia-
tion process as they differ in their sexual recognition mechanisms,

as well as differences in cuticle hydrocarbons, which are important
for sexual recognition, and a low reproductive success. Nonethe-
less, under laboratory conditions the individuals maintain repro-
ductive compatibility. Therefore, studies comparing more
populations are needed to determine whether this species is still
cohesive or if it is a complex of cryptic species. Hence, various
genetically and geographically differentiated lineages would be
expected in this species, as has been found in some phylogeo-
graphic studies for other taxa (Breeschoten et al., 2016; Guevara-
Chumacero et al., 2010; Leaché et al., 2013; Maldonado-Sánchez
et al., 2016; Pringle et al., 2012; Suárez-Atilano et al., 2014).

To identify the evolutionary and historical processes that have
led to the diversification and current distribution of Canthon
cyanellus in Mexico, we set the following objectives: (1) to infer
its genetic diversity and population structure; (2) to determine
whether it includes genetically and geographically distinct lin-
eages; (3) to elucidate its demographic history; and (4) to deter-
mine whether climatic fluctuations in the Pleistocene had any
effect on the diversification and historical demography of this spe-
cies in Mexico.

2. Materials and methods

2.1. Sample collection, DNA extraction and sequencing

A total of 97 individuals were collected and sequenced from ten
localities in Mexico. These are situated at the Pacific and the Gulf of
Mexico slopes, and the Sierra Madre Oriental (Table 1 and Fig. 1).
Those populations were selected because they encompass all the
phenotypic variation described in the subspecies. All biological
material was transported alive to the laboratory and subsequently
frozen at !70 "C.

We used sequences of the nuclear Internal Transcribed Spacer
Region 2 (ITS2), and of two mitochondrial genes: Cytochrome Oxi-
dase Subunit I (COI) and 16S rRNA. DNA was obtained by grinding
both hind legs of each beetle which were processed according to
the protocol of the DNeasy Blood & Tissue kit (QIAGEN). The COI
gene was amplified with primers M202 ‘‘Jerry” (50-caacatttatttt
gattttttgg-30) and M70 ‘‘Pat” (50-tccaatgcactaatctgccatatta-30)
(Simon et al., 1994). For 16S we used the primers M14 ‘‘16Sar” (5
0-cgcctgtttaacaaaaacat-30) and M233 ‘‘ND1A” (50-ggtcccttacgaattt
gaatatatcct-30) (Simon et al., 1994). ITS2 was amplified with ITS2A
(50-tgtgaactgcaggacacat-30) and ITS2B (50-tatgcttaaattcagggggt-30)
(Beebe and Saul, 1995).

PCRs were run in a 25 ll volume: 1 ll DNA (20–40 ng), 4 ll 5X
Buffer, 2 ll MgCl2 (25 mM), 2.5 ll dNTPs (8 lM), 0.25 ll BSA, 0.8 ll
of each primer (10 lM), 0.2 ll Taq polymerase (5 U/ll) and
13.35 ll ddH2O. PCR conditions were as follows: initial denature
at 94 "C for 3 min, followed by 30 cycles at 94 "C for 1 min for
denaturing, 50 "C for 1 min for annealing, and 70 "C as extension
temperature for 2 min, finishing with an extension step at 72 "C

Table 1
List of the populations of Canthon cyanellus used in this study. Elevation is given in meters above sea level.

State/locality (code) Location Elevation Vegetation

Tamaulipas, Gómez-Farías (gf) 23.04801, !99.14334 379 Semi-deciduous tropical forest
Veracruz, Tuxpan (tp) 20.95444, !97.46611 52 Rain-fed permanent agriculture
Veracruz, Papantla (pap) 20.41667, !97.45000 200 Secondary herbaceous vegetation derived from evergreen tropical forest
Veracruz, La Mancha (man) 19.56881, !96.40924 194 Rain-fed annual and semi-permanent agriculture
Veracruz, Jalcomulco (jal) 19.32861, !96.74694 370 Rain-fed annual and permanent agriculture
Veracruz, Los Tuxtlas (tx) 18.58333, !95.06667 120 Secondary vegetation derived from evergreen tropical forest and grasslands
Chiapas, Raymundo Enríquez (raye) 14.86420, !92.30055 99 Rain-fed permanent agriculture
Chiapas, El Vergel (ver) 14.70294, !92.26723 22 Rain-fed annual agriculture
Oaxaca, Huatulco (hua) 15.78000, !96.09000 30 Mid-stature deciduous tropical forest
Jalisco, Chamela (cha) 19.49971, !105.0229 90 Low-stature deciduous tropical forest
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for 5 min. Slight variations of this protocol were used for specific
fragments. The best yield for 16S was obtained with 35 cycles,
whereas for ITS2 the optimal annealing was at 53 "C.

PCR products were visualized on 1% agarose gels stained with
ethidium bromide, and purified with the QIAquick kit (QIAGEN).
Purifications were sent for sequencing in both directions to Macro-
gen (South Korea). Sequences were edited with Sequencher v5
(Gene Codes Corp, Ann Arbor, Michigan) and aligned with BioEdit
v7.0.9 (Hall, 1999). The default options set were used to produce
the best alignment. Subsequently, this alignment was refined man-
ually with Mesquite v3.1 (Maddison and Maddison, 2010).

2.2. Geographic structure and genetic diversity

A spatial analysis of molecular variance (SAMOVA) was carried
out to identify genetic congruent geographic regions. This analysis
was done with the aid of SAMOVA v1 (Dupanloup et al., 2002) using
100 annealing steps to obtain the fixation index (FCT; Excoffier et al.,
1992). This analysis was performed on the combined data set (ITS2
+ 16S + COI) in order to identify the number of groups (K) that are
statistically significant. A non-hierarchical analysis of molecular
variance (AMOVA) was performed including all the populations,
followed by a hierarchical analysis among the statistically

significant regions identified by the SAMOVA. These analyses were
conducted for each locus with 1000 permutations using Arlequin
v3.5 (Excoffier and Lischer, 2010). A Mantel test (Mantel, 1967),
based on the combined data set, was applied to test for correlation
between genetic and geographic distance matrices. For this test the
Ade4 package (Chessel et al., 2004) for R was used with 999 repli-
cates. The genetic distance matrix was estimated using MEGA v7
(Kumar et al., 2016) applying the Maximum Composite Likelihood
method, excluding gaps and bootstraping for 500 replicates.

For each locus, the nucleotide (p) and haplotype (Hd) diversity
(Nei, 1987) were estimated using DnaSP v5.10 (Librado and Rozas,
2009). This analysis was conducted for each population, as well as
for each of the regions inferred in the SAMOVA. Haplotype net-
works were constructed with Network v4.5 (Bandelt et al., 1999)
using the median-joining algorithm.

2.3. Genealogical reconstruction

We approached the study by recognizing evolutionary units
based on the phylogenetic species concept (De Queiroz, 2007).
Genealogies were inferred for the nDNA data set (ITS2), mtDNA
data set (COI + 16S) and combined data set (ITS2 + COI + 16S).
Homologous sequences from closely related species (i.e., Canthid-
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Fig. 1. Haplotype networks and distribution for the populations of Canthon cyanellus in Mexico. (A) ITS2 nuclear gene, (B) 16S rRNA, and (C) COI mitochondrial genes. The
Roman numeral indicates the respective haplogroup, the size of the pie is proportional to the haplotype frequency, whereas the number is the amount of samples having that
haplotype in that particular locality (if the pie has no number, that haplotype is a singleton). The studied populations are located in the map with specific colors corresponding
to the haplotype networks. The Mexican mountain systems are highlighted by contour lines corresponding to Sierra Madre Occidental (grey), Sierra Madre Oriental (brown),
trans-Mexican Volcanic Belt (black), Sierra Madre del Sur (green), Sierra Madre de Chiapas (yellow), Central Highlands of Chiapas (purple) and the Isthmus of Tehuantepec
(red line).
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ium centrale, Canthon viridis, C. luteicollis and C. smaragdulus) were
used as outgroup. Genealogies were estimated with a Bayesian
inference analysis (BI) using MrBayes v3.2.3 (Ronquist et al.,
2012) on the CIPRES portal (Miller et al., 2010). The nucleotide sub-
stitution model for each locus was selected using the Akaike infor-
mation criterion (Alfaro and Huelsenbeck, 2006) in jMODELTEST
v2.0.2 (Posada, 2008). Ten million replicates were used for the
nDNA, 20 million for the mtDNA and 40 million for the combined
data set. In each case, trees and parameters were sampled every
1000 generations. The majority-rule consensus tree was obtained,
with their respective posterior probabilities (PP), after discarding
the initial 25% of the accumulated trees (Ronquist et al., 2012).
Neighbor-joining analyses were carried out to contrast the results
from the BI analyses. Neighbor-joining trees were constructed with
the aid of the software MEGA v7 (Kumar et al., 2016). The detailed
methods and results from these analyses can be consulted in Sup-
plementary material S3.

2.4. Divergence times and historical demography

For dating and inferring potential isolation events in the popu-
lations of C. cyanellus, we used the software BEAST v1.8.2
(Drummond et al., 2012). As a tree prior for optimizing the geneal-
ogy, the BI topology inferred from the combined data set was used.
To estimate divergence times, the ‘relaxed clock’ model was used.
The genealogy was calibrated using the nucleotide substitution
rates of 0.85% per million years estimated for ITS2 (Caccone et al.,
1988), 1.2% for 16S rRNA and 2% for COI (Papadopoulou et al., 2010).

The nucleotide substitution models, as well as the parameters
used as priors for each locus, were those indicated by jMODELTEST.
The coalescence processwas used as prior for the treemodel.Monte
Carlo Markovian Chains (MCMC) were run for 20 million genera-
tions, sampling trees and parameters every 1000 generations. Anal-
ysis consisted of two independent runs with one cold and three hot
chains. The program TRACER v1.6 (Rambaut et al., 2014) was used
for assessing stationarity of the MCMC, effective sample sizes
(ESSs > 200), and posterior intervals spanning the 95% highest pos-
terior density. These analyzes were repeated four times and the
resulting trees from each run were combined using LogCombiner
v1.8.2, applying a burn-in of 25%. The nodes evaluated were those
that had a PP value > 80%. The inferred chronogram was displayed
with the program FigTree v1.4.2 (Rambaut, 2008).

To determine the historical demographic dynamics of the pop-
ulations, Fu’s Fs neutrality test (Fu, 1997) was performed. The his-
torical demography was compared and visualized with the
generalized Skyline-plot analysis using the software BEAST v1.8.2
(Drummond et al., 2012). The parameters used as priors, as well
as the molecular clock model, were identical to those used for
the coalescence analyses for node dating. Skyline-plots were
drawn for the major lineages inferred from the BI analysis (com-
bined data set) and for the ingroup as a whole.

2.5. Dispersal versus vicariance processes

To infer the dispersal and vicariance events occurring during
the evolutionary history of Canthon cyanellus, we used the statisti-
cal dispersal-vicariance analysis (S-DIVA) as implemented in the
software RASP v2.1 beta (Yu et al., 2010, 2013). The ancestral states
of each node in the condensed tree were reconstructed using the
75% remaining trees (i.e., 79,996 trees after ’burn-in’) generated
in BEAST. RASP reconstruction provides estimates of the probabil-
ity of the ancestral areas at each node, taking into account phylo-
genetic uncertainty (Nylander et al., 2008). Six geographical
regions were defined for the ingroup according to the SAMOVA
results [i.e., Gomez Farias (gf), Northern Gulf of Mexico (NGM),
Southern Gulf of Mexico (SGM), Southern Pacific Slope (SPS), Huat-

ulco (hua) and Chamela (cha); from now on, uppercase letters are
used to identify regions that encompass more than one collection
site (i.e., population), whereas lowercase letters identify regions
formed by a single collection site]. For the outgroup two alterna-
tives geographical areas were defined: (A) South America (C. lute-
icollis, C. smaragdulus) and (B) Northwest Mexico, central, east
and south U.S. (C. viridis).

3. Results

3.1. Genetic structure and diversity

The length of the alignment obtained with the three loci was
2196 base pairs (ITS2 = 667 bp, 16S = 766 bp and COI = 763 bp) with
a total of 76 haplotypes. The number of haplotypes per locus was
nine for ITS2, 37 for 16S and 66 for COI (Table 2). These sequences
were uploaded in GenBank, and were registered under accession
numbers from KX807611 to KX807722. Genetic diversity was
slightly lower for ITS2 (p = 0.0022, Hd = 0.7306) than for the mito-
chondrial loci (p = 0.0092, Hd = 0.9547 for 16S; p = 0.0310,
Hd = 0.9850 for COI). The Hd within regions containing more than
one population varied with the marker analyzed. For 16S all the Hd
values were similar (NGM = 0.8, SGM = 0.828 and SPS = 0.81), but
were heterogeneous for the others. The Hd values for ITS2 were
NGM = 0.3250, SGM = 0.2966 and SPS = 0.2667, whereas for COI
were NGM = 0.6810, SGM = 0.9890 and SPS = 0.9810.

The SAMOVA of the combined data for K = 2 to 6 population
groups showed a gradual increase in the FCT values. The optimal
grouping was obtained for K = 6 (i.e., gf, NGM, SGM, SPS, hua and
cha; Table 3). Mantel test revealed a significant positive correlation
between genetic and geographic distances (r = 0.396, P = 0.0129)
suggesting isolation by distance.

The non-hierarchical AMOVA showed higher genetic structure
for the nDNA (ITS2: FST = 0.89), followed by the mtDNA loci (16S:
FST = 0.74, COI: FST = 0.70). In all the three loci most of the genetic
variation is due to differences between the populations (ITS2
88.59% P < 0.0001, 16S 74.37% P < 0.0001, COI 71.544% P < 0.0001;
Table 4A). The hierarchical AMOVA, with the populations parti-
tioned in regions (i.e., gf, NGM, SGM, SPS, hua and cha), showed
that the genetic variation is due mainly to differences between
regions (ITS2 83.75% P < 0.0001, 16S 74.88% P < 0.0001, COI
71.54% P < 0.0001) and, to a lesser extent, to differences between
populations within regions (ITS2 5.95% P < 0.0001, 16S 1.62%
P < 0.0001, COI 1.37% P < 0.0001; Table 4B).

The ITS2 network comprises nine haplotypes interconnected by
one to three mutational changes (Fig. 1A). Three haplogroups are
recognized: haplogroup I, with six haplotypes, includes the indi-
viduals from SGM, SPS and hua. Haplogroup II has only one haplo-
type that includes the individuals from the cha population, and
haplogroup III has two haplotypes including the gf population from
the Eastern Sierra Madre and the populations from the NGM
region. On the other hand, the network for 16S recovers five hap-
logroups encompassing 37 haplotypes connected by up to 7 muta-
tions (Fig. 1B); whereas the COI sequences form six haplogroups
with 66 haplotypes interconnected by 1–16 mutational steps
(Fig. 1C). Athough the mitochondrial loci have higher haplotype
diversity than the nuclear locus, the identified haplogroups show
geographic consistency among the three genes. These haplogroups
correspond with the grouping generated by the SAMOVA (i.e., gf,
NGM, SGM, PSP, hua and cha; Table 2).

3.2. Genealogical reconstruction

The best-fit model of nucleotide substitution was HKY (nst = 2)
for the three loci; varying only in their specific parameters (16S
rRNA: gamma = 0.175, p-inv = 0.358; COI: gamma = 1.417). The
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core of the genealogy recovered from the combined data matrix is
a monophyletic clade (PP = 1) form by C. cyanellus (Fig. 2). The first
split shows six individuals from gf forming a well-supported clade
(PP = 1), that is the sister group of the rest of the specimens. The
next node includes the cha population as an independent group
(PP = 0.94) that is sister to the clade composed by the four remain-
ing regions (NGM, hua, SPS and SGM). Within this clade, two
monophyletic groups are recovered. Four individuals from gf plus
all the individuals from NGM constitute the first one. The second
group (PP = 0.81), designated as the ‘‘great lineage” henceforth,

encompasses most of the morphological variation observed in C.
cyanellus. This ‘‘great lineage” contains the southernmost popula-
tions on the distribution range of this species in Mexico. Within
the ‘‘great lineage”, the hua population forms a well-supported
monophyletic clade (PP = 1), that is sister to the samples from
SPS + SGM. Although the SGM region formed a well-supported
monophyletic group (PP = 0.99), the individuals collected in the
populations from the SPS region do not show reciprocal mono-
phyly. The genealogies obtained from the individual analyses
showed consistent topologies [supplementary material S1 (nDNA),
and S2 (mtDNA)].

3.3. Divergence times and historical demography

The chronogram (Fig. 3) inferred from the combined data set
shows that the radiation of C. cyanellus occurred during the Pleis-
tocene. The diversification events that gave origin to the main lin-
eages within this species occurred in a time range of 1.63 to 0.91
Myr (nodes I to V). The Fu’s Fs values were negative for the SGM
+ SPS + hua clade (Fs = !31.005, P < 0.00001) and for the NGM lin-
eage (Fs = !4.749, P < 0.01). These negative values denote an
increase in the effective population size (Ne). By contrast, a reduc-

Table 2
Molecular diversity indices for each locus by population and region.

Region/population ITS2 16S COI ITS2 16S COI ITS2 16S COI ITS2 16S COI
n n n H H H p p p Hd Hd Hd

gf
Tamaulipas, Gómez-Farías 10 10 10 2 4 6 0.0005 0.0084 0.0237 0.3556 0.6440 0.7780

NGM
Veracruz, Tuxpan (tp) 10 10 8 1 5 4 0.0000 0.0015 0.0058 0.0000 0.8000 0.7500
Veracruz, Papantla (pap) 6 6 6 2 3 3 0.0009 0.0012 0.0054 0.60000 0.7330 0.6000
NGM total 16 16 14 2 6 6 0.0005 0.0016 0.0056 0.3250 0.8000 0.6810

SGM
Veracruz, La Mancha (man) 10 10 10 1 4 10 0.0000 0.0012 0.0127 0.0000 0.7110 10,000
Veracruz, Jalcomulco (jal) 10 10 10 2 6 10 0.0003 0.0020 0.0139 0.2000 0.8670 10,000
Veracruz, Los Tuxtlas (tx) 10 10 10 2 6 6 0.0000 0.0034 0.0107 0.5333 0.8440 0.8890
SGM total 30 30 30 3 12 26 0.0001 0.0025 0.0131 0.29660 0.8280 0.9890

SPS
Chiapas, Raymundo Enríquez (raye) 11 11 11 3 5 9 0.0006 0.0016 0.0114 0.3450 0.7820 0.9640
Chiapas, El Vergel (ver) 10 10 10 2 5 9 0.0003 0.0015 0.0068 0.2000 0.7560 0.9780
SPS total 21 21 21 3 7 17 0.0004 0.0016 0.0091 0.2667 0.8100 0.9810

hua
Oaxaca, Huatulco 8 10 9 1 8 7 0.0000 0.0028 0.0030 0.0000 0.9556 0.9170

cha
Chamela, Jalisco 10 10 10 1 4 4 0.0000 0.0011 0.0011 0.0000 0.5330 0.6440

Global 95 97 94 9 37 66 0.0022 0.0092 0.0310 0.6740 0.9547 0.9850

n: Sample size; H: number of haplotypes; p: nucleotide diversity; Hd: haplotype diversity.

Table 3
Fixation Index (FCT) for the population groups computed from the SAMOVA based on
the combined data set (ITS2, 16S, COI) in populations of Canthon cyanellus.

Population groupings K FCT P

(gf, tp, pap, cha) (jal, man, tx, raye, ver, hua) 2 0.408 <0.01
(gf, tp, pap) (jal, man, tx, raye, ver) (hua, cha) 3 0.508 <0.01
(gf, tp, pap) (jal, man, tx, raye, ver) (hua) (cha) 4 0.607 <0.00001
(gf) (tp, pap) (jal, man, tx, raye, ver) (hua) (cha) 5 0.654 <0.00001
(gf) (tp, pap) (jal, man, tx) (raye, ver) (hua) (cha) 6 0.728 <0.001

gf: Gómez-Farías; tp: Tuxpan; pap: Papantla; jal: Jalcomulco; man: La Mancha; tx:
Los Tuxtlas; raye: Raymundo Enríquez; ver: El Vergel; hua: Huatulco; cha: Chamela.

Table 4
Analysis of molecular variance (AMOVA) for the nDNA locus (ITS2) and the mtDNA loci (16S and COI) in populations of Canthon cyanellus. (A) non-hierarchical AMOVA and (B)
between geographical groups. *P < 0.05.

ITS2 16S COI

df SS Est. Var. Var. (%) df SS Est. var. Var. (%) df SS Est. var. Var. (%)

(A)
BP 9 109.95 1.27 88.59 FST = 0.89⁄ 9 253.70 2.81 74.37 FST = 0.74⁄ 9 787.07 8.93 70.46 FST = 0.70⁄

WP 85 13.92 0.16 11.41 87 84.32 0.97 25.63 84 314.28 3.74 29.54

Total 94 123.87 1.44 96 338.01 3.78 93 1101.35 12.67

(B)
BR 5 105.71 1.33 83.75 FCT = 0.84⁄ 5 247.28 3.09 74.88 FCT = 0.75⁄ 5 765.05 9.88 71.54 FCT = 0.72⁄

BPWR 4 4.25 0.09 5.95 FST = 0.90⁄ 4 6.42 0.07 1.62 FST = 0.77⁄ 4 22.01 0.19 1.37 FST = 0.73⁄

WP 85 13.92 0.16 10.30 FSC = 0.37⁄ 87 84.32 0.97 23.50 FSC = 0.06 ⁄ 84 314.28 3.74 27.10 FSC = 0.05 ⁄

Total 94 123.87 1.59 96 338.01 4.12 93 1101.35 13.81

BP: between populations; WP: within populations; BR: between geographic regions; BPWR: between populations within geographic regions.
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tion in the Ne for the gf + cha lineage was inferred (Fs = 4.986,
P = 0.028); nonetheless, this might be the result of the deep diver-
gence of the two subclades. The skyline plots show that the popu-
lations remained in stasis during most of the Pleistocene, followed
by a period of demographic expansion towards the end of this
epoch. For the ‘‘great lineage” the increment in Ne ocurred ca.
180,000 years ago (Fig. 3A); whereas, for the NGM happened ca.
80,000 years ago (Fig. 3B). The gf + cha clade apparently suffered
a slight reduction in the Ne, which became more pronounced ca.
50,000 years ago, followed by a recovery ca. 20,000 years ago dur-
ing the last glacial maximum (Fig. 3C).

3.4. Biogeographical scenario

The S-DIVA (Fig. 4) suggests a complex biogeographic scenario.
The analysis infers at lest 10 dispersal and 11 vicariant events
during the evolutionary history of this species. Apparently, no

historical migrations were detected between the north (cha, gf,
pap, tp) and the south populations (hua, jal, man, raye, tx, ver).
Alternative combinations of areas were recovered to represent
the most probable ancestral distribution for C. cyanellus in Mexico
(Fig. 4, node A); however, the areas gf, cha and hua recurrently
were part of those combinations. For the internal nodes the analy-
sis inferred better-defined scenarios with ancestral ranges
restricted to combinations of high probability areas (e.g., SPS-
SGM node B, SGM node C, SPS node D and hua node E).

4. Discussion

4.1. Genetic structure and diversity

The genetic diversity estimated in the present study with ITS2
for Canthon cyanellus was lower compared to that estimated for
the 16S rRNA and COI loci. This difference is consistent with the fact
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that, in insects, mtDNA genes evolve faster than nDNA genes, par-
ticularly those coding for proteins (Andújar et al., 2016; Chung-
Ping and Danforth, 2004; Timmermans et al., 2016). The differ-
ences in p and Hd between C. cyanellus and phytophagous beetles
(Table 5) may be related to differences in life-history characteris-
tics, dispersal strategies and body size, which determine gene flow
and the effective population size (Kang et al., 2012). In the present
study, Hd was consistently higher in the populations inhabiting
transformed environments, than in those inhabiting preserved
areas [(e.g., tx (grasslands) versus cha (deciduous tropical forest)].

These results are related to the fact that C. cyanellus is more abun-
dant in tropical fragmented landscapes than in preserved forests
(Arellano et al., 2008). We found, in particular, that the southern-
most populations of the distribution range (i.e., hua, jal, man, raye,
tx and ver) showed higher Hd than the populations at the Northern
part (i.e., cha, gf, pap and tp). In addition, our results also show that
C. cyanellus is a highly polymorphic species, given the large number
of single haplotypes per population. Thus, the absence of
haplotypes widely distributed across populations and geographical
regions may be due to limited historical gene flow and to the fact
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that the populations current genetic structure has been deter-
mined by historical (isolation by distance) and contemporary
(e.g., landscapes transformation) processes that restrict gene
exchange between populations due to the fragmentation of land-
scapes as those existing in the Neotropic (Benítez-Malvido et al.,
2016; Blandón et al., 2016; Fischer and Lindemayer, 2007; Mock
et al., 2007).

The phylogeographic structure of C. cyanellus is similar to that
of other taxa with neotropical distribution in Mexico. Pringle
et al. (2012) analyzed populations of ants of the genus Azteca (from
Mexico to northern Nicaragua) and identified five lineages in
Azteca pittieri, which differed genetically during the Pleistocene,
two of them at the Pacific slope (i.e., Chamela and Huatulco).
Suggesting limited historical gene flow between geographically
separate populations. In contrast, other studies carried out with
other neotropical taxa, observe a more complex phylogeographic
structure associated with the main mountain systems of Mexico
(Daza et al., 2009; Pedraza-Lara et al., 2015; Suárez-Atilano et al.,
2014). Implying that the recent phylogeographic structure of those
taxa is due to events that occurred during the Pleistocene.

4.2. Biogeographical scenario and diversification times

The mutation rate of 2.3% per million years for mtDNA is an
accepted data for calibrating molecular clocks in beetles
(Papadopoulou et al., 2010). Even though we used a 0.85% rate
for the ITS2, it should be emphasized that there is no agreed-
upon mutation rate as the length of this fragment is highly variable
among taxa (Coleman, 2003). If the rates used do represent the
evolutionary dynamics within these regions for the genome of C.
cyanellus, then the divergence times indicate that this species arose
by the end of the Pliocene, followed by a subsequent radiation dur-
ing the Pleistocene (Fig. 3). Based on the recovered genealogy, a
series of cladogenetic events seemingly took place in a North-
South spatial sequence once the ancestor occupied the area in
which this species currently ranges.

The spatial and temporal variations in habitat availability might
have modeled the genetic and geographic structure of the popula-
tions that we see today. Canthon cyanellus buries the resource in
soft soils for nesting (Favila and Díaz, 1996). It is likely that the
microhabitat characteristics prevailing in forest fragments during
the Pleistocene, during the interglacial when temperatures became
warmer (Gibbard et al., 2010), would have allowed these beetles to
find favorable conditions to breed. Similarly, Ornelas et al. (2013),
found a Pleistocene divergence between different taxa associated
to cloud forests in Mexico. These authors suggest that the genetic
differentiation of the study species can be explained by the forest
dynamics as influenced by the Quaternary climatic fluctuations.

Some of the divergences identified in the present study seem to
be associated to various magmatic episodes that occurred along
the trans-Mexican Volcanic Belt particularly in the Veracruz area.
One of the largest volcanism pulses is represented by the lava flows
that occurred ca. 1.5 Myr in the area of Poza Rica and Metlaltoyuca
(Ferrari et al., 2005). It is likely that such geological activity is related
to the isolation between the NGM region and the ‘‘great lineage”.
The divergences occurred in the southernmost distribution range
of this species may be associated to the displacement along the
coastal zones that the vegetation in the Mexican lowlands under-
went. Forests drifted to the south during the Pleistocene colder peri-
ods; then they returned to the North during the warmer periods
(Gómez-Pompa, 1973). This process might have promoted vicariant
events as has been suggested for other taxa distributed within
Mexico (Guevara-Chumacero et al., 2010; Maldonado-Sánchez
et al., 2016; Ornelas et al., 2013; Suárez-Atilano et al., 2014). Finally,
the discovery of four individuals collected at the gf population that
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are genetically more related to individuals at the NGM region than
to the other gf samples provide evidence of contemporary
migration.

4.3. Historical demography

The skyline-plot analyses (Fig. 3) suggests that the demographic
expansion were postglacial ("128,000–116,000 years before pre-
sent, Mush, 2002) and occurred after the divergence of the main
lineages. This suggests that glacial and interglacial cycles could
have had a major effect on the genetic diversity of those popula-
tions located at the Northern end of the distribution. Ruiz et al.
(2010) identified demographic expansions in populations of Den-
droctonus pseudotsugae located in the Mexican Sierra Madre Occi-
dental, the Northwest U.S. and Southwest of Canada, but did not
detect expansions in the Mexican Sierra Madre Oriental or the
Southwest U.S. These authors suggest that the expansions occurred
from the middle to the end of the Pleistocene, probably after a bot-
tleneck caused by the glacial cycles. In contrast, our results do not
point out to bottlenecks in any of the main lineages during the evo-
lutionary history of C. cyanellus.

4.4. Taxonomic considerations

The genetics of Canthon cyanellus cyanellus had been previously
studied using RAPDs (Ortiz-Domínguez et al., 2010); however, no
genetic structure was found in the Gulf of Mexico populations.
Ortiz-Domínguez et al. (2006) however, based on cuticle hydrocar-
bons used for sexual recognition, suggest that allopatric popula-
tions may be undergoing an incipient speciation process. The
combined data set recovered five well supported (PP > 0.94) mono-
phyletic lineages (i.e., gf, NGM, SGM + SPS, hua and cha), which
could be risen to the species level. However, these monophyletic
clades do not correspond with the allocation of the subspecies
(sensu Halffter, 1961); nor do they, necessarily represent a single
phylogenetic species as suggested by Solís and Kohlmann (2002).
It is possible that different genetic and environmental factors
determine the chromatic polymorphism of Canthon cyanellus
(Favila et al., 2000), as has been observed in other beetles (Davis
et al., 2008a; Scholtz, 2009; Whitman and Agrawal, 2009). Addi-
tional studies on behavior, morphology and ecological niche can
reinforce the results hereby obtained. Nevertheless, our data points
out the need to review the taxonomic status and delimitation of
the potential species that comprise the C. cyanellus complex.

4.5. Conclusions

The phylogeographic analysis of the Canthon cyanellus complex
in the Mexican Transition Zone indicates that this species

diversified into five lineages during the Pleistocene, when the main
mountain systems had already been formed. The lineages corre-
spond to allopatric populations or groups of populations geograph-
ically separated. The cladogenesis can be associated with
geological events (e.g. volcanic activity) and cycles of contraction
and expansion of forests associated with Pleistocene climatic oscil-
lations. These conclusions, however, must be considered as prelim-
inary due to the lack of precise evolutionary rates for the different
genes, along with the uncertainty observed in the phylogenetic
reconstructions. This research is part of an ongoing effort for
understending the evolutionary history of beetles along the Mexi-
can Transition Zone. Within this line, follow up studies of the
genetic structure of Central and South American populations will
help us to reach a robust taxonomic delimitation of the lineages
here found in the Canthon cyanellus complex.
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